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THE PRINCIPLE OF LEAST CONSTRAINT FOR SYSTE19S WITH 

NON-RESTORING CONSTRAINTS* 

V.A. SINITSYN 

Two new versions of the principle of least constraint are derived from 
the D'Alembert-Lagrange principle for systems with ideal holonomic and 
non-holonomic restoring and non-restoring constraints. The first 
version is similar to Boltzmann's and Bolotov's modification of Gauss's 
principle for systems with non-restoring constraints. The difference is 
that here the actual motion is determined in a certain bounded set of 
possible motions as the one that deviates least from the motion of the 
system with all non-restoring constraints and any part of the restoring 
constraints disengaged. According to the second version of the 
principle, the actual motion is found by comparing certain distinguished 
possible motions as to their deviation from the motion of the system 
obtained by eliminating any part of the non-restoring and any part of 
the restoring constraints. Examples are given. 

1. Consider the motion of a mechanical system with ideal holonomic and non-holonomic 
constraints, some of which are restoring and some non-restoring: 

f, (rl, vlr _ . ., rji, v,> t) =: II (s = 1, . . -) 1) il.9 
f, (rz, vlr . . ., rrit v,, 1) 3 fl (s = 1 -t 1, . . ,( 4 

rl, I . ., r,, VI, . . ., v,$ are the radius-vectors and velocity vectors of the material points of 
the system, with numbers h- = 1, . . ., n; fs are continuous and differentiable functions (twice 
differentiable for the holonomic constraints) of their arguments: the time t, coordinates 
.rIc, Yt;, zii 

. . 
and velocrtles %, ukU, &. 

The principle of least constraint (Gauss's principle) will be derived, following Bolotov 
/l/, from the D'Alembert-Lagrange principle for systems with non-restoring constraints 

r, (F, - m,twti) 6r, < 0 (1.Z) 

where F, are the active forces, mh. and wii are the masses and accelerations of the 
material points, and 6r, are the virtual displacement at time t in the state defined by 
radius-vectors ch. and velocity vectors vh. Here and below summation over k is from 12 1 
to k = n. 

Under the constraints (1.11, the virtual displacements 6r, satisfy the conditions 

CNskckk = 0 (s = 1, . . ., I), ZN,,fir,< > 0 (s = t -i- 1, . . ., r) (1.3, 

where Nsh. (s = 1, . . ., r; h- z.7 1, . ., n) are continuous vector-valued functions of the coordinates 
and velocities of the points and the time: Nsh. .: (i)f,.!ds,, df,iJyk, df,ldz,)T for the holonomic 
constraints and N,yN -= (a.f:au,,, df,,‘dvk,, af,:‘do,,)’ for the non-holonomic constraints. 

Non-restoring constraints which may be reduced as to position and/or velocity are not 
taken into consideration, since when the forces are bounded in magnitude there is a time 
interval during which they do not obstruct the motion. Consideration is given only to non- 
restoring constraints which may be strained /2/ in a given state (fs(rl, ~~,...,r',, v,. t) = 0, 
s= i,...,r), i.e., they may create reactions and change the accelerations of points, CO- 

ordinating them with the imposed constraints. Thus, the restrictions due to restoring and 
non-restoring constraints (1.1) are satisfied provided the following equations and inequalities, 
which are linear in the accelerations, hold: 

d,(s = 1, . . ., r) are continuous functions of the coordinates and velocities of the points and 
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of the time, 1 is the number of restoring constraints, and (r- 1) is the number of non- 

restoring constraints; for brevity, the non-negative quantities a, (s = 1, . . ..P) will be 

referred to as the constraint-reducing accelerations. 
To virtual displacements which satisfy conditions (1.3) there correspond possible motions 

with possible accelerations wk' (i.e., accelerations consistent with the constraints; wvh- are 

the accelerations of the material points in the actual motion) 131: 

6r, = Vz (We' - w,)(dV (1.5) 

This correspondence will be established if we can define motions with possible acceler- 
ations such that the constraint-reducing accelerations (a,') are not less than the constraint- 
reducing accelerations in the actual motion (a,), i.e., 

a d*=ad=O (5=1,..., d), a,'>a,>O (s=2+1,...,r) 

as' = ZNskwR' f d, (s = 1, . . ., 7) 

(1.6) 

Then the differences (Wk'- Wk) in (1.5) for the possible accelerations determined by 
(1.6) will satisfy the conditions 

ENSI, (Wvk' - w.J=o (s= 1,. . .t 0, W, 0% - wd > (1.7) 
0 (s=Z-+1,...,r). 

which have the same form as conditions (1.3) imposed on the virtual displacements 6rk. 
Substituting (1.5) into (1.21, we obtain the following inequality for the distinguished 

possible motions: 

2 (FE - mkWk)(Wk’ - wkf< 0 fY.8) 

Now consider a -released" system, i.e., a system obtained from the original one by 
eliminating all the non-restoring constraints and any part of the restoring ones. Letting 
wkO denote the accelerations of the material points of the released system in its actual 
motion, given that the active forces and the initial state are the same, we can write the 
general equation of analytical dynamics as follows: 

Z (F, - mkWr0)6r, = 0 0.9) 

The vertical displacements 64 in inequality (1.2) (which satisfy (1.31) are also 

virtual displacements of the released system and may be inserted into Eq.11.9). Replacing 
them in (1.9) by their expressions from (1.51, we obtain the equation 

2 (F, - ?72kWk')(W~' - Wk) = 0 

Subtracting this equation from (1.8), we obtain the inequality 

Zmi, (w," - wa)(wti' - we) < 0 

Using a standard property of bilinear forms, we can rewrite this inequality in the form 

Sbd - Sbo + sdo < o (1.10) 

where S&j is the deviation of the distinguished possible (6) motion from the actual (d) 

motion of the system, Sh is the deviation of the distinguished possible motion from the 
actual motion of the released system (of, and S, is the deviation of the actual motion 
from the actual motion of the released system: 

Sad = -& ,?mti(wk'-w#, SbO = -&%nk (wk' -wNO)' 

Since all the terms on the left of (1.10) are non-negative and vanish only when the 
accelerations of the points in the respective motions are identical, we also have 

sdo < sb, fl.ll) 

This inequality states the principle of least constraint for systems with non-restoring 
constraints, in the following form: the deviation of the actual motion from the actual motion 
of the released system obtained by removing all non-restoring and some of the restoring 
constraints is less than the analogous deviation of any possible motion for which the 
constraint-slackening accelerations do not fall below their values in the actual motion. 

A brief discussion now follows of the difference between the assertion just proved and 
the formulation of the modified Gauss principle as substantiated by Boltzmann and Bolotov 
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/I/: the deviation of the actual motion of the system from its actual motion when all 
non-restoring constraints and an arbitrary number of restoring constraints are eliminated is 
less than the deviation of any of the possible motions. Even before the appearance of /l/, 
authors engaged in investigating systems with non-restoring constraints were aware of the 
difficulty of deriving Gauss's principle from the D'Alembert-Lagrange principle and the 
obscurity of Boltzmann's exposition of the question in 141. Bolotov /l/ pointed out that the 
derivation relied on the following underlying assumption: inequality (1.2) remains valid if 
6~ is replaced by any virtual displacements which satisfy only those of inequalities (1.3) 

associated with constraints which are not slackened at time t in the actual motion. 
Hence it is evident that the modification of Gauss's principle as formulated involves 

possible motions of a new system, obtained by eliminating those non-restoring constraints 
which are slackened in the actual motion (the slackening accelerations in the actual motion 
are greater than zero). Generally speaking, it is not known in advance which of the 
non-restoring constraints are slackened as to acceleration, and their determination is a 
major problem in connection with the motion of systems with non-restoring constraints. Never- 
theless, a property of the actual motion follows from this assumption makes it possible to 
pick out the actual motion among the possible motions selected for comparison, which 
generally involve less non-restoring constraints. The version of the principle obtained here 
picks out the actual motion from a more restricted set of possible motions. 

Example 1. Consider a mathematical pendulum on a flexible cord of length 1. In polar 
coordinates r, P, with origin at the point of suspension, the condition of releasability 
from the constraint is I--r> IJ. In the "constrained" state we have I_ =I and r' = 0. Using 
the principle of least constraint, let us find the condition for the cord to slacken in 
respect of its acceleration (1."~: 0). 

We first construct the function %> (see Sect-l) (m is the mass of the material point) 
(wy = r" _ ,.,I‘*. "'@ =: "6" + %.‘(i_'): 

')S& 2: l?z I(+' - mr")2 L_ I2 (iC w ’ ~~ IL’ “,“] a 
A free material point (in the force field of a mathematical pendulum) has the acceleration 

due to gravity g; therefore, in the state r, 'P. r'. cp' (7 = I, I' = 0) , the generalized accelerations 
of the released material point are: 

r"O rip"' -, fi ~0s cp, l[."@ =: -_61-'sin (1’ 

The necessary conditions for the function S,, in this example to have a minimum ills,‘,, 

<?F" zzz 0 , a‘s&$‘dip-’ = 0) lead to the expressions 
?.' irp.2 + g ~0s rf, cc" :- --pZ-' sin rp 

which, in view of the inequality v"<@ (the slackening condition), imply the following well- 
known inequality (v,), cp,,', rl) = I, ro' 0 are the initial data) : 

&‘2 I- g (3 CO> <p --- :! c0s 'PO) < II 

which defines the angle P at the instant the cord crumples Up. 

8%7mpZe 2. Consider a circular, inhomogeneous, absolutely rigid disc of radius R and 
mass m, rolling without sliding along a straight horizontal track in a uniform gravitational 
force field (plane motion in a vertical plane). The centre of mass C is at a distance a 
from the centre.0 of the disc (we do not require that agn). the moment of inertia of the 
disc relative to an axis through the centre of mass and perpendicular to the plane of the 
motion is equal to J. In the basic coordinate system (one axis along the horizontal guide in 
the direction of motion of the centre 0 of the disc and the other vertically upward) the 
position of the disc is determined by the coordinates 5, y of the centre 0 and the angle of 
rotation 'p (between the vertical axis and the ray 00. 

We have one non-restoring and one restoring constraint - the unilateral constraint 
furnished by the horizontal guide and the condition of rolling without sliding: 1/mn>o,z- 

Rrp :: 0. When these conditions are expressed as equalities, and together with them we take 
IJ‘ iI and 2' -- Rip’ = 0, the accelerations must satisfy the conditions 

j," > 0, I" - Ry" = 0 (i.lY) 

We shall find the conditions under which the first constraint of (1.12) in the actual 
motion is reduced (y" > 0). This will be done on the assumption that the second constraint of 
(1.12) remains in force. Without discussing the question of whether these constraints - here 
treated as ideal - are actually realizable, we would like to point out that the situation is 
quite realistic for some motions when describing the interaction at the point of contact 
according to the Amontons-Coulomb law of dry friction, which takes the molecular attraction 
force into consideration (see, e.g., 151). 

The released system is obtained by releasing the disc from the constraints (1.12). For 
a disc in free plane motion we have 

I..* = apr's sin v7 y"O z __6 4. G*p'a C*S 'p, F"" Z 0 



We construct the function S, &scribing the deviations of the possible motions from 

the motion of the free disc: 
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2,& = m [($"' - $.)PO + &' - y"")2 + 2a (z"' - .$'a) (9"' - cp"") COS 'p - 
2@ (@.' - $.*) (VP"' - cp"") sin cp) + (J f ma') (cp"' - cp"")" 

The necessary conditions for $6, to have a minimum, with the second constraint (1.12) 
imposed on the possible accelerations, have the following form (A is an undertermined multi- 
plier) : 

asbala2-' + X = 0, as,,lay”’ = 0 (1.13) 

The actual motion (y">O) is determined by the values of x*', Q", e", h which solve Eqs. 
(1.13). The partial derivatives in these equations, evaluated for the actual motion (indicated 
by enclosing the derivatives in question in parentheses), have the following mechanical in- 
terpretation: (aS,,,laz"') is the horizontal component of the reaction at the point of contact; 
(as,,/ay”‘) = m (yc” -f- g) (where Y, is the coordinate of the centre of mass). To ascertain the 
mechanical meaning of (aS,,lacp"'), we let 0, denote the centre of oscillation (a point whose 
distance z from the centre 0 equals the reduced length of a physical pendulum such that 0 is 
the point of suspension (iOO,I = I= ai-%,%=Ji(ma)). Then (SS,Ja~~") = m= (w - g sin q). where W is 
the projection of the absolute acceleration of U1 on the transverse direction of the polar 
axes, relative to which U1 has coordinates f,V (the centre of the polar system is at 0). 

The determinant of the set of Eqs.(l.l3), as equations in s"',~"',~"', for real values of 
'p, may vanish only if 1= a (all the mass concentrated at the point C, J -= 0). and this 
happens if casv= -R/a. In this situation the solution of the problem is not unique (the model 
is not well-posed). 

Eqs.(l.l3) imply the following expression for the undetermined multiplier: 

h = --m (1 - a) ‘p”a sin VIA (1.14) 
(.I = sina cp - 2v cos 'p - p-v"< 0. p = l/a, Y = R/a 

Using the condition Y'. > 0 , we deduce from the second equation of system (1.13) that 
alp" sin 'p > g - aqp'% cos rp (1.15) 

The third equation of system (1.13) may be written as 
w = g sin 9 + hvirn (1.16) 

These conditions express the following properties of the motion of the disc at the instant 
it becomes detached from the base. If (1.15) is satisfied, we have (G~J~Y"') 4 0, when I" = 0 
(the constraint is unstrained). 

The determinant of system (1.13) increases without limit in magnitude as a-0 (the 
centre of mass approaches the centre of the disc). At the same time, inequality (1.15) cannot 
hold for sufficiently small values of a, and therefore the non-restoring constraint cannot be 
reduced. 

If the first constraint in (1.12) is reduced at 'P = 0, the horizontal component of the 
reaction is zero (see (1.14)), aqp">r (see (1.15)) and w=O. At 'P=n the constraints 
cannot be reduced, because inequality (1.15) does not hold. 

At the instant the first constraint of (1.12) is reduced, E) and 2. have the same sign as 
sin 9 ; the projection of the reaction on the horizontal axis has a sign opposite to that of 
sin rp. 

If the second constraint of (1.12) is eliminated after the first (non-restoring) con- 
straint has been reduced, then x",Y", 'P" take the values 2"O > Y”“, cp-. The disc is detached 
from the base if #"">O. But if there is an interval of time during which, besides inequality 
(l.lS), the inequality y""<O is also satisfied, one has a process which is characteristic 
of systems with variable structure. 

2. Continuing the development of Mach's concept of least deviation of the actual motion 
from the motion of a system with a smaller number of constraints (though we should mention 
that in the context of this statement /6/ there is no mention of non-restoring constraints), 
we shall now compare the actual motion with possible motions in respect of their deviations 
from the motion of the system when released from not all but only part of the non-restoring 
constraints. 

Suppose it is proposed to compare motions as to their deviation from the motion of a 
system in which any part of the restoring and any part of the non-restoring constraints are 
reduced. Changing the numbering, we number them s = 1, . . ..P. 

We wish to determine the possible motions with possible accelerations !vh' (It =I,...,n) 
which satisfy the conditions 
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as ~a,‘-0 (s-l,...,p) (2.1) 

Let A denote the set of accelerations satisfying conditions (2.1) (A -= {wh-’ : q’ :: a, ; 0 
s -z I,..., 11)). On substituting the accelerations w,‘GA into the constraints numbered p ~: 
1. .( i-, the latter may be divided into two groups by comparing the appropriate a,' and % , 
(s = p $- 1, ., 1.): 

a,‘> a,; 0 (s=p-'~l,...,Q,-;r) (2.2) 

a, > a,,' . U (s m= 'I ,m 1, ,, I.) (2.3) 

Group (2.3) contains the non-restoring constraints which are reduced in the actual motion. 
Therefore the virtual displacements 6r, in (1.2) do not necessarily satisfy the part of in- 
equalities (1.3) numbered q + 1,...,r (according to the Boltzmann-Bolotov position; see 
Sect.1). The system with constraints s = l,...,p, the accelerations of whose points (\v~* li = 
1, . . ..n) satisfy the equalities 

a,* = CL s (s=-,...?P), a,* = 8 Nsh.\vi;* + d, (".i) 

will be called the comparison system. 
In view of (1.5) and (2.4), the virtual displacements in the comparison system satisfy 

the equalities 

XNs&,; : 0 (s = 1,. . ., P) 

The comparison system, therefore, is governed by the following equation of analytical 

dynamics: 

2: (F, - q.\vk*) 6r,; = 0 (2.5) 

If the comparison system is used in Sect.1 instead of the released system, one qets the 
following version of the principle for systems with non-restoring constraints: the deviation 
of the actual motion of the system from the motion of the comparison system obtained by 

eliminating r -p restoring and non-restoring constraints with accelerations \vk*~A = 

(wli’ : a,’ = a, > 0 s 2 1, .( p) is a minimum compared with the deviations of the possible 

motions with possible accelerations 

B - {Wk’ : a,’ > cc, I-0, s=p+i....,q<rr) 

The Boltlzmann-Bolotov modification of Gauss's principle is a special case of this 
assertion with a,' = as = 0 (~1 1,. ., p)(p is the number of restoring constraints after all 

the non-restoring and part of the restoring constraints have been eliminated), a, ’ > 01, z (1 
(s = p + 1, ., 4). 

The version of the principle derived in Sect.1 is also a special case - that with 

% '=a,-0 (s=l....,p<<), a,"&>0 (S=p+l,..r) 

We note that the derivation of the new versions of the principle remains unchanged if 
some of the constraints are linearly dependent on the accelerations of the points. 
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